首页 | 本学科首页   官方微博 | 高级检索  
     


Constrained model predictive control in ball mill grinding process
Authors:Xi-song Chen  Qi Li
Affiliation:School of Automation, Southeast University, Nanjing, Jiangsu Province, 210096, China
Abstract:Stable control of grinding process is of great importance for improvements of operation efficiency, the recovery of the valuable minerals, and significant reductions of production costs in concentration plants. Decoupled multi-loop PID controllers are usually carried out to manage to eliminate the effects of interactions among the control loops, but they generally become sluggish due to imperfect process models and a close control of the process is usually impossible in real practice. Based on its inherent decoupling scheme, model predictive control (MPC) is employed to handle such highly interacting system. For high quality requirements, a three-input three-output model of the grinding process is constructed. Constrained dynamic matrix control (DMC) is applied in an iron ore concentration plant, and operation of the process close to their optimum operating conditions is achieved. Some practical problems about the application of MPC in grinding process are presented and discussed in detail.
Keywords:Model predictive control   Dynamic matrix control   PID control   Ball mill   Grinding process
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号