首页 | 本学科首页   官方微博 | 高级检索  
     

关于非完整系统分析动力学的一个问题
引用本文:陈德民,梁立孚,李海波. 关于非完整系统分析动力学的一个问题[J]. 哈尔滨工程大学学报, 2001, 22(4): 61-63,86
作者姓名:陈德民  梁立孚  李海波
作者单位:哈尔滨工程大学建筑工程学院,
摘    要:第1部分,从Hamiltion原理出发,在泛函全量式中引入Lagrange乘子,将约束条件纳入泛函中,Lagrange乘子作为独立变量参加变分,进而将泛函的约束条件转化为泛函的自然条件,第2部分,在泛函的全量式引入Lagrange乘子,Lagrange乘子不参加变分,进而推导出非完整系统测地轨道方程,第3部分,在泛函的变发式中引入Lagrange乘子,进而推导出非完整力学的真实轨道方程,然后给出一个典型实例,验证了本文的理论和方法的正确性。

关 键 词:Hamilton原理 广义变分原理 Lagrange乘子法 测地轨道方程 真实轨道方程 非完整系统 分析动力学
文章编号:1006-7043(2001)04-0061-03

Analytical Dynamics of Non-Holonomic System
CHEN De_min,LIANG Li_Fu,LI Hai_bo. Analytical Dynamics of Non-Holonomic System[J]. Journal of Harbin Engineering University, 2001, 22(4): 61-63,86
Authors:CHEN De_min  LIANG Li_Fu  LI Hai_bo
Abstract:By following the Hamilton principle and introducing Lagrange multipliers into finite quantity expression of functional ,constraint conditions are inserted into functional and Lagrange multipliers are considered as independent variables that take part in variational operation,and as a result,the constraint conditions are changed into natural conditions of the functional.By introducing Lagrange multipilers into finite quantity expression of functional but keeping these Lagrange multipliers away from variational operation,geodesic trajectories of non_holonomic system is derived.By introducing Lagrange multipliers into variational expression of functional,actual trajectories of non_holonomic systems are derived.A typical example is given to show the correctness of the theory.
Keywords:Hamilton principle  generalized variational principle  Lagrange multiplier method  geodesic trajectories  actual trajectories.
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号