首页 | 本学科首页   官方微博 | 高级检索  
     

基于混沌PSO算法的选择性神经网络集成方法
引用本文:田雨波,李正强,朱人杰. 基于混沌PSO算法的选择性神经网络集成方法[J]. 计算机应用, 2008, 28(11): 2844-2846
作者姓名:田雨波  李正强  朱人杰
作者单位:江苏科技大学,电子信息学院,江苏镇江,212003;江苏科技大学,电子信息学院,江苏镇江,212003;江苏科技大学,电子信息学院,江苏镇江,212003
基金项目:江苏省高校自然科学基金
摘    要:提出基于十进制粒子群优化算法(DePSO)和二进制PSO算法(BiPSO)的选择性神经网络集成(NNE)方法,通过PSO算法合理选择组成神经网络集成的各个神经网络,使个体间保持较大的差异度,减小"多维共线性"和样本噪声的影响。为有效保证PSO算法的粒子多样性,在迭代过程中加入混沌变异。试验表明,混沌PSO算法是组合优化权值的有效方法,同已有方法比较可以有效提高神经网络集成的泛化能力。

关 键 词:神经网络集成  粒子群优化  混沌
收稿时间:2008-05-09
修稿时间:2008-07-29

Selective neural network ensemble methods based on chaos PSO
TIAN Yu-bo,LI Zheng-qiang,ZHU Ren-jie. Selective neural network ensemble methods based on chaos PSO[J]. Journal of Computer Applications, 2008, 28(11): 2844-2846
Authors:TIAN Yu-bo  LI Zheng-qiang  ZHU Ren-jie
Affiliation:TIAN Yu-bo,LI Zheng-qiang,ZHU Ren-jie(School of Electronics , Information,Jiangsu University of Science , Technology,Zhenjiang Jiangsu 212003,China)
Abstract:Selective Neural Network Ensemble (NNE) methods based on Decimal Particle Swarm Optimization (DePSO) and Binary Particle Swarm Optimization (BiPSO) were proposed in this paper. The basic idea of the methods was to optimally select Neural Networks (NNs) to construct NNE with the aid of PSO. This may maintain the diversity of NNs and decrease the effect of collinearity and noise of sample. Meanwhile, chaos mutation was adopted in order to increase the diversity of particles of PSO. The experimental results show that the chaos PSO algorithm is an effective ensemble method, and it may improve the generalization ability of NNE in comparison with the available ones.
Keywords:Neural Network Ensemble (NNE)  Particle Swarm Optimization (PSO)  chaos
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号