首页 | 本学科首页   官方微博 | 高级检索  
     


Space‐time block coded spatial modulation with labeling diversity
Authors:Kyle Govindasamy  HongJun Xu  Narushan Pillay
Affiliation:School of Engineering, University of KwaZulu‐Natal, Republic of South Africa
Abstract:Space‐time block coded spatial modulation (STBC‐SM) exploits the advantages of both spatial modulation and the Alamouti space‐time block code. Meanwhile, space‐time labeling diversity has demonstrated an improved bit error rate (BER) performance in comparison to the latter. Hence, in this paper, we extend the application of labeling diversity to STBC‐SM, which is termed STBC‐SM‐LD. Under identical channel assumptions, STBC‐SM‐LD exhibits superior BER performance compared to STBC‐SM. For example, with 4 × 4, 64‐quadrature amplitude modulation (64‐QAM), STBC‐SM‐LD has a BER performance gain of approximately 2.6 dB over STBC‐SM. Moreover, an asymptotic bound is presented to quantify the average BER performance of M‐ary QAM STBC‐SM‐LD over independent and identically distributed Rayleigh frequency‐flat fading channels. Monte Carlo simulations for STBC‐SM‐LD agree well with the analytical framework. In addition to the above, low‐complexity (LC) near‐maximum‐likelihood detectors for space‐time labeling diversity and STBC‐SM‐LD are presented. Complexity analysis of the proposed LC detectors shows a substantial reduction in computational complexity compared to their ML detector counterparts. For example, the proposed detector for STBC‐SM‐LD achieves a 91.9% drop in computational complexity for a 4 × 4, 64‐QAM system. The simulations further validate the near‐maximum‐likelihood performance of the LC detectors.
Keywords:labeling diversity  near‐ML detection  space‐time labeling diversity  spatial modulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号