首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进Xception方法的绝缘子识别
引用本文:汤璐1,王淑青1,金浩博1,刘逸凡2,王娟1. 基于改进Xception方法的绝缘子识别[J]. 陕西电力, 2022, 0(2): 69-74
作者姓名:汤璐1  王淑青1  金浩博1  刘逸凡2  王娟1
作者单位:(1.湖北工业大学电气与电子工程学院,湖北武汉 430068;2.华中科技大学武汉光电国家研究中心,湖北武汉 430074)
摘    要:为了对无人机航拍巡检中的绝缘子是否含有缺陷进行准确识别,改进了Xception分类识别方法。首先,利用resize函数将无人机拍摄下的图片进行缩放处理至合适尺寸,并采取数据增强技术扩充样本;其次,将Xception的池化层和输出层进行改进至更适合绝缘子复杂情况下的分类识别,并在验证集上对模型的参数进行对比确定,使模型性能最佳 ;最后,改进的Xception方法在数据集上与 4种图像分类算法进行比较。实验结果表明,在数据集上改进的Xception方法的准确度和每秒处理图片张数都有一定提升。

关 键 词:绝缘子识别  神经网络  改进Xception  无人机巡检

Insulator Identification Based on Improved Xception Method
TANG Lu1,WANG Shuqing1,JIN Haobo1,LIU Yifan2,WANG Juan1. Insulator Identification Based on Improved Xception Method[J]. Shanxi Electric Power, 2022, 0(2): 69-74
Authors:TANG Lu1  WANG Shuqing1  JIN Haobo1  LIU Yifan2  WANG Juan1
Affiliation:(1. College of Electrical and Electronic Engineering, Hubei University of Technology,Wuhan 430068,China;2.Wuhan National Research Center of Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China)
Abstract:In order to accurately identify whether defects exist in insulators in UAV aerial inspection, the paper makes the improvements of Xception classification and identification method. Firstly, resizing function is used for zooming pictures taken by UAV to the appropriate size, and data enhancement technology is used to expand samples. Then the pool layer and output layer of the Xception are improved to be more suitable for the classification and identification of the insulators in complex situations, and the parameters of model are compared and determined on the verification set to optimize the performance of the model. Finally, the improved Xception method is compared with four image classification algorithms on the data set. The experimental results show that the accuracy of the improved Xception method on the data set and the number of the pictures processed per second are improved to a certain extent.
Keywords:insulator recognition  neural network  improved Xception  UAV patrol inspection
点击此处可从《陕西电力》浏览原始摘要信息
点击此处可从《陕西电力》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号