首页 | 本学科首页   官方微博 | 高级检索  
     

应用ANN/HMM混合模型预测蛋白质二级结构
引用本文:石鸥燕,杨惠云,杨晶,田心b. 应用ANN/HMM混合模型预测蛋白质二级结构[J]. 计算机应用研究, 2008, 25(12): 3590-3592
作者姓名:石鸥燕  杨惠云  杨晶  田心b
作者单位:天津医科大学,基础医学院,天津,300070;天津医科大学,生物医学工程系,天津,300070
基金项目:国家自然科学基金资助项目(30770545)
摘    要:针对3状态隐马尔可夫模型(hidden Markov model,HMM)预测蛋白质二级结构准确率不高的问题,提出15状态HMM,通过改进的算法与BP神经网络相结合进行二级结构预测。研究对象为CB513数据集中筛选出的492条蛋白质序列,将其随机均分7组。应用混合模型进行预测,对准确率进行7交叉验证,Q3准确率达7721%,SOV值为7252%。结果表明,混合模型既能充分考虑相邻氨基酸残基间的相互影响,也能在一定程度上照顾二级结构的远程相关性,因此带来了较好的预测准确率。

关 键 词:蛋白质二级结构预测  隐马尔可夫模型  人工神经网络

Hybrid model of ANN/HMM for protein secondary structure prediction
SHI Ou-yan,YANG Hui-yun,YANG Jing,TIAN Xin. Hybrid model of ANN/HMM for protein secondary structure prediction[J]. Application Research of Computers, 2008, 25(12): 3590-3592
Authors:SHI Ou-yan  YANG Hui-yun  YANG Jing  TIAN Xin
Affiliation:(a.Faculty of Basic Medicine, b.Dept.of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China)
Abstract:Aimed at the lower accuracy of 3-state hidden Markov model for protein secondary structure prediction,proposed 15-state HMM.Using modified algorithm of HMM to predict secondary structure combined with BP neural networks.Selected 492 proteins from the dataset CB513,and divided them into 7 even subsets.Applied the hybrid model to predict secondary structure and evaluated its accuracy by 7-fold cross validation.The hybrid model appeared to be very efficient,with Q3 score of 77.21% and SOV of 72.52%.The results show that the hybrid model not only captures the local information,but also considers the long-distance information.So it gets higher prediction accuracy.
Keywords:protein secondary structure prediction(HMM)  hidden Markov model  artificial neural network(ANN)  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号