Abstract: | Abstract Blends of ethylene acrylic elastomer (AEM) and thermotropic liquid crystalline polymer (TLCP) have been prepared by melt mixing technique. Processing studies indicated a decrease in the viscosity of the blends with the addition of liquid crystalline polymer (LCP). At lower level of LCP the tensile strength and tear strength increased. However, at higher level of LCP tensile strength values decreased due to insufficient adhesion between two phases. The modulus of the samples increased with the LCP content. The degree of crystallinity increased with increasing LCP content. This improvement in crystallinity is associated with the increase in crystallite size. For the blends, thermal studies indicated, the endothermic signals which were more prominent at all the peak temperatures. The heat of degradation values increased with the LCP content. Scanning electron microscope (SEM) study suggested the fibril formation, which affected the failure mechanism under DMA studies. Storage modulus and loss modulus of the blends increased with increasing LCP content. At above glass transition temperature (Tg) improvement in storage modulus is nearly five times higher than that of the pure AEM. |