首页 | 本学科首页   官方微博 | 高级检索  
     


Improvement of Physicochemical Properties of Rubber Blends Between Nonirradiated and Irradiated Rubber Latexes by Radiation Vulcanization
Abstract:Abstract

Nonirradiated natural rubber latex (NRL) and irradiated (12 kGy) rubber latex were blended in ratios of 100:0, 85:15, 65:35, 50:50, 35:65, 15:85, and 0:100 (v/v) to improve properties of the rubber latex. The blends were irradiated using different irradiation doses (0–20 kGy) in the presence of a radiation vulcanization accelerator (RVA), normal butyl acrylate (n-BA). The physicochemical properties of the nonirradiated latex, irradiated latex, and blend films were determined after leaching with distilled water. It was observed that the tensile strengths of the blend films increases with an increase in the content of the irradiated proportion and radiation doses. The composition of the blends and the doses of radiation were optimized. The maximum tensile strength (31.41 MPa) was found for the 50:50 composition of the blend with a 5 kGy radiation dose. The 100:0 blends, when irradiated, give the highest tensile strength (27.69 MPa) with 12 kGy but a 15:85 nonirradiated blend gives the tensile strength of 26.18 MPa.
Keywords:Irradiated latex  Radiation vulcanization accelerator  Nonirradiated latex  Blend films
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号