首页 | 本学科首页   官方微博 | 高级检索  
     


An Experimental Study and Statistical Analysis of the Effect of Laser Pulse Energy on the Geometric Quality During Laser Precision Machining
Abstract:In laser precision machining, process parameters have critical effects on the geometric quality of the machined parts. Due to the nature of the interrelated process parameters involved, an operator has to make a host of complex decisions, based on trial‐and‐error methods, to set the process control parameters related to the laser, workpiece material, and motion system. The objective of this work is to investigate experimentally the effect of laser pulse energy on the geometric quality of the machined parts in terms of accuracy, precision, and surface quality. Experimental study of formation of machined craters on thin copper foil with variation in laser pulse energy, the geometry and the surface topology of craters is presented. The geometrical parameters were measured and statistically analyzed with respect to incident pulse energy. Statistical analysis including pattern recognition was employed to analyze the experimental data systematically and to serve proper selection of the process parameters to achieve the desired geometric quality of the machined parts. Plausible trends in the crater geometry with respect to the laser pulse energy are discussed. The technique has been verified experimentally on simple geometrical features such as circles and grooves, and the geometric quality is evaluated.
Keywords:Laser precision machining  Process parameters  Geometric quality
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号