首页 | 本学科首页   官方微博 | 高级检索  
     


Some Observations of the Chip Formation Process and the White Layer Formation in High Speed Milling of Hardened Steel
Abstract:Abstract

With the advent of recent advances in machine tools design (main spindle, feed drives, etc.), high-speed milling has become a cost-effective manufacturing process to produce products with high surface quality, low variations in the machined surface characteristics, and excellent dimensional accuracy. In taking into account the most obvious advantages of high-speed machining over conventional machining, a key issue is to identify the effective range of cutting speed that corresponds to high-speed machining producing improved machining performance. The simple reason for this is the fact that machining performance improves when entering the high-speed region but, large increase in cutting speed is not cost-effective due to rapidly increasing tool-wear rates and high power consumption. In order to address this issue requiring a trade-off, an attempt has been made in this paper by formulating an approximate procedure which is based on the analysis of chip-formation mechanisms and a chip-shape analysis, together with the use of metallographic methods. This procedure includes fundamental understanding of the well-known phenomena of white layer formation during the high-speed machining of hardened steels. Essentially, the white layer generated on a machined surface represents a surface defect. Therefore, it is necessary to determine the factors influencing its generation and its prevalent characteristics. There is lack of knowledge in this area, which tends to present the influence of the white layer on the surface integrity and performance of the machined part as a function of machining conditions. This article provides a basis for the determination of the optimal range of cutting speeds and feed rates in high-speed milling of hardened steels ensuring minimized influence of the white layer on the workpiece quality and machined surface integrity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号