首页 | 本学科首页   官方微博 | 高级检索  
     

稳健收敛的时差频差定位技术
引用本文:房嘉奇, 冯大政, 李进. 稳健收敛的时差频差定位技术[J]. 电子与信息学报, 2015, 37(4): 798-803. doi: 10.11999/JEIT140560
作者姓名:房嘉奇  冯大政  李进
作者单位:西安电子科技大学雷达信号处理国家重点实验室西安 710071
基金项目:国家自然科学基金(61271293)资助课题
摘    要:为实现对目标位置和速度的精确定位,该文提出一种基于正则化理论的时差频差定位技术。该算法首先利用最大似然方法确定目标函数,然后通过传统牛顿法对目标位置和速度进行迭代求解。众所周知传统牛顿法对初始值要求较高,较差初始值会导致Hess矩阵趋于病态,从而致使迭代发散,该文引入正则化理论修正Hess矩阵,使其更加合理,保证算法稳健收敛。实验结果表明:相对于传统牛顿法,该文算法在初始值的选取上具有稳健性,对误差选取较大的初始值,仍能够保证算法的收敛性;相对于现有闭合式定位方法,该文算法在噪声较大时具有较好的定位精度,定位精度接近于Cramer-Rao界,具有广泛的实用价值。

关 键 词:无源定位   到达时差   到达频差   传统牛顿法   Hess矩阵   正则化算法
收稿时间:2014-04-30
修稿时间:2014-11-24

A Robustly Convergent Algorithm for Source Localization Using Time Difference of Arrival and Frequency Difference of Arrival
Fang Jia-Qi, Feng Da-Zheng, Li Jin. A Robustly Convergent Algorithm for Source LocalizationUsing Time Difference of Arrival and Frequency Difference of Arrival[J]. Journal of Electronics & Information Technology, 2015, 37(4): 798-803. doi: 10.11999/JEIT140560
Authors:Fang Jia-qi  Feng Da-zheng  Li Jin
Abstract:To pursue accurate source location and velocity, this paper proposes a method based on the Regularization theory to solve the source localization problem utilizing Time-Difference-Of-Arrival (TDOA) and Frequency-Difference-Of-Arrival (FDOA). The proposed algorithm determines the objective function using the maximum likelihood estimator, and then uses classical Newton method to estimate the source position and velocity in an iterative way. It is known that the Newton method requires a good initial value, and a bad initial value can cause an ill-posed Hess matrix which leads to the iteration divergence. This paper introduces the Regularization theory to modify the Hess matrix to make it more proper, which ensures the iteration convergence. The experiment results show that compared with the classical Newton method, the proposed algorithm is robust to the initial value, and is still able to ensure its convergence even with an inaccurate initial value of large error. Compared with some other closed-form source location methods, the proposed algorithm has better location accuracy in large noise levels which can achieve the Cramer-Rao bound. The proposed algorithm can be widely applied in practice.
Keywords:Passive location  Time-Difference-Of-Arrival (TDOA)  Frequency-Difference-Of-Arrival (FDOA)  Newton method  Hess matrix  Regularization algorithm
本文献已被 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号