首页 | 本学科首页   官方微博 | 高级检索  
     


FRED fuel behaviour code: Main models and analysis of Halden IFA-503.2 tests
Authors:K Mikityuk  A Shestopalov
Affiliation:a Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
b RRC“Kurchatov Institute”, Kurchatov sq, 123182 Moscow, Russia
Abstract:The FRED fuel rod code is being developed for thermal and mechanical simulation of fast breeder reactor (FBR) and light-water reactor (LWR) fuel behaviour under base-irradiation and accident conditions. The current version of the code calculates temperature distribution in fuel rods, stress-strain condition of cladding, fuel deformation, fuel-cladding gap conductance, and fuel rod inner pressure. The code was previously evaluated in the frame of two OECD mixed plutonium-uranium oxide (MOX) fuel performance benchmarks and then integrated into PSI's FAST code system to provide the fuel rod temperatures necessary for the neutron kinetics and thermal-hydraulic modules in transient calculations. This paper briefly overviews basic models and material property database of the FRED code used to assess the fuel behaviour under steady-state conditions. In addition, the code was used to simulate the IFA-503.2 tests, performed at the Halden reactor for two PWR and twelve VVER fuel samples under base-irradiation conditions. This paper presents the results of this simulation for two cases using a code-to-data comparison of fuel centreline temperatures, internal gas pressures, and fuel elongations. This comparison has demonstrated that the code adequately describes the important physical mechanisms of the uranium oxide (UOX) fuel rod thermal performance under steady-state conditions. Future activity should be concentrated on improving the model and extending the validation range, especially to the MOX fuel steady-state and transient behaviour.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号