首页 | 本学科首页   官方微博 | 高级检索  
     


Fluid-to-fluid modeling of two-phase flow critical heat flux in horizontal helically coiled tubes
Authors:Chang-Nian Chen  Tien-Chien Jen  Wen-Wen Chen
Affiliation:a School of Energy and Power Engineering, Shandong University, No. 17923 Jingshi Rd., Jinan, Shandong Province 250061, PR China
b Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
Abstract:The new similarity laws for fluid-to-fluid modeling of two-phase flow critical heat flux (CHF) in horizontal helically coiled tubes were derived based on the dimensional analysis and similarity theory considering the effect of the geometrical parameters on CHF. A generalized factor Dn was introduced to the new similarity laws, and all the new dimensionless numbers were derived from the classical theorem of Buckingham π for dimensional analysis. The obtained dimensionless parameter sets were a reasonable extension to Ahmad's compensated distortion model, which may be considered as a special case of the new dimensionless parameter sets when the variable n is equal to unity. Based on the experimental data, the specific similarity numbers were determined for CHF phenomena in horizontal helically coiled tubes. A new equivalent characteristic parameter De-helix was developed, which could reflect the influence of complex flow channels on the occurrence of CHF. The equivalent characteristic parameter consists of the essential geometrical parameters of tubes and the fluid thermophysical properties. The new fluid-to-fluid modeling methods were proposed for CHF of R134a-water in horizontal helically coiled tubes, which could be used readily to derive the CHF data of water through the CHF data of R134a at the corresponding experimental conditions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号