首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of CHF in saturated forced convective boiling on a heated surface with impinging jets using artificial neural network and genetic algorithm
Authors:Tenglong Cong  Suizheng Qiu  Wenxi Tian
Affiliation:School of Nuclear Science and Technology, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Abstract:In this paper, a three-layer Back Propagation (BP) algorithm artificial neural network (ANN) for predicting critical heat flux (CHF) in saturated forced convective boiling on a heated surface with impinging jets was trained successfully with a root mean square (RMS) error of 17.39%. The input parameters of the ANN are liquid-to-vapor density ratio, ρl/ρv, the ratio of characteristic dimension of the heated surface to the diameter of the impinging jet, L/d, reciprocal of the Weber number, 2σ/ρlu2(L − d), and the number of impinging jets, Nj. The output is dimensionless heat flux, qco/ρvHfgu. Based on the trained ANN, the influence of principal parameters on CHF has been analyzed as follows. CHF increases with an increase in jet velocity and decreases with an increase in L/d and Nj. CHF increases with an increase in pressure at first and then decreases. Besides, a new correlation was generalized using genetic algorithm (GA) as a comparison with ANN to confirm the advantage of ANN.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号