首页 | 本学科首页   官方微博 | 高级检索  
     

Wavelet time series MPARIMA modeling for power system short term load forecasting
引用本文:冉启文,单永正,王建赜,王骐. Wavelet time series MPARIMA modeling for power system short term load forecasting[J]. 哈尔滨工业大学学报(英文版), 2003, 10(1)
作者姓名:冉启文  单永正  王建赜  王骐
作者单位:National Key Lab of Tunable Laser Technology Harbin Institute of Technology,Dept. of Math,Harbin Institute of Technology,Dept. of Electrical Engineering,Harbin Institute of Technology,National Key Lab of Tunable Laser Technology Harbin Institute of Technology Harbin 150001,China,Dept. of Math,Harbin Institute of Technology,Harbin 150001,China,Harbin 150001,China,Harbin 150001,China,Harbin 150001,China
基金项目:theMultidisciplineScientificResearchFoundationofHarbinInstituteofTechnology(GrantNo .HITMD .2 0 0 0 18)
摘    要:0 INTRODUCTIONFortheeconomicandsecureoperationofpowersys tems ,predictionoffutureloaddemand ,inparticularshortterm (2 4hoursahead)loadforecasting(STLF)isimpor tant .Fundamentaloperationalfunctionssuchasunitcom mitment,hydrothermalcoordination ,inter changeevalu…


Wavelet time series MPARIMA modeling for power system short term load forecasting
RAN Qi wen ,,SHAN Yong zheng ,WANG Jian ze ,WANG Qi. Wavelet time series MPARIMA modeling for power system short term load forecasting[J]. Journal of Harbin Institute of Technology (New Series), 2003, 10(1)
Authors:RAN Qi wen     SHAN Yong zheng   WANG Jian ze   WANG Qi
Affiliation:1. National Key Lab of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China;Dept. Of Math, Harbin Institute of Technology, Harbin 150001, China
2. Dept. of Math, Harbin Institute of Technology, Harbin 150001, China
3. Dept. of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China
4. National Key Lab of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
Abstract:The wavelet power system short term load forecasting(STLF) uses a mulriple periodical autoregressive integrated moving average(MPARIMA) model to model the mulriple near periodicity, nonstationarity and nonlinearity existed in power system short term quarter hour load time series, and can therefore accurately forecast the quarter hour loads of weekdays and weekends, and provide more accurate results than the conventional techniques, such as artificial neural networks and autoregressive moving average(ARMA) models test results. Obtained with a power system networks in a city in Northeastern part of China confirm the validity of the approach proposed.
Keywords:wavelet forecasting method  short term load forecast  MPARIMA model
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号