首页 | 本学科首页   官方微博 | 高级检索  
     

基于梯度与归一化互信息的印刷图像配准
引用本文:金闳奇,简川霞,赵荣丽. 基于梯度与归一化互信息的印刷图像配准[J]. 包装工程, 2018, 39(9): 182-189
作者姓名:金闳奇  简川霞  赵荣丽
作者单位:广东工业大学,广州,510006;广东工业大学,广州510006;广东省创新方法与决策管理系统重点实验室,广州510006
基金项目:国家自然科学基金(51605101);广东省数控一代机械产品创新应用示范工程专项资金(2013B011301023);广东工业大学青年基金重点项目(17QNZD001)
摘    要:目的为了提高印刷图像配准的精度。方法提出一种基于梯度和归一化互信息的印刷图像配准方法。首先获取图像的归一化互信息,同时使用边缘检测算子获取图像边缘梯度的模值和方向角,然后根据边缘梯度信息和归一化互信息构造新的测度函数,以新的测度函数为目标函数,用Powell优化算法获取用于配准的最优参数。结果通过将文中提出的方法和基于归一化互信息的图像配准方法分别用于印刷图像配准,得到的统计实验结果表明,对于100项随机配准参数,新方法得出的配准误差波动幅度更小,配准精度更高。结论文中所提方法在准确性上优于基于归一化互信息的图像配准方法。

关 键 词:归一化互信息  边缘梯度  Powell算法  图像配准
收稿时间:2017-06-28
修稿时间:2018-05-10

Printing Image Registration Based on Gradient and Normalized Mutual Information
JIN Hong-qi,JIAN Chuan-xia and ZHAO Rong-li. Printing Image Registration Based on Gradient and Normalized Mutual Information[J]. Packaging Engineering, 2018, 39(9): 182-189
Authors:JIN Hong-qi  JIAN Chuan-xia  ZHAO Rong-li
Affiliation:Guangdong University of Technology, Guangzhou 510006, China,Guangdong University of Technology, Guangzhou 510006, China and 1.Guangdong University of Technology, Guangzhou 510006, China; 2.Guangdong Provincial Key Laboratory of Innovation Method and Decision Management System, Guangzhou 510006, China
Abstract:The work aims to improve the accuracy of printing image registration (IR). A printing image registration method based on gradient and normalized mutual information (NMI) was proposed. The NMI was firstly obtained, and the modulus and direction angle of the image edge gradient were obtained with the edge detection operator. Then, a new measure function was designed based on the edge gradient information and NMI. The Powell was used to optimize the algorithm to obtain the best parameters for registration with the new measure function as the objective function. The proposed method and the NMI-based image registration method were respectively used for printing IR. The results obtained from the statistical experiments showed that, the new method had smaller fluctuation range of registration errors and higher registration accuracy regarding 100 random registration parameters. The proposed method is superior to the NMI-based image registration method in terms of accuracy.
Keywords:normalized mutual information   edge gradient   Powell algorithm   image registration
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《包装工程》浏览原始摘要信息
点击此处可从《包装工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号