首页 | 本学科首页   官方微博 | 高级检索  
     


New steroidal anti-inflammatory antedrugs bind to macrophage glucocorticoid receptors and inhibit nitric oxide generation
Authors:AS Heiman  F Hickman  DH Ko  HJ Lee
Affiliation:College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee 32307, USA.
Abstract:In continuing efforts to synthesize potent, anti-inflammatory steroids devoid of systemic side effects, methyl 9 alpha-fluoro-11 beta,17 alpha,21-trihydroxy-3,20-dioxo-pregna-1,4-diene-16 alpha-carboxylate (FP16CM) and its 21-acetate derivative (FP16CMAc) were recently synthesized and screened in animal models of inflammation. The compounds have now been assessed for high-affinity glucocorticoid receptor binding and glucocorticoid-mediated inhibition of nitric oxide (NO) generation in an in vitro RAW 264.7 macrophage cell culture system. Relative potencies for glucocorticoid receptor binding were 1, 1.7, and 2.4 for prednisone (P) (IC50 = 287 nM), FP16CM, and FP16CMAc, respectively. Concomitant relative potencies for inhibition of NO generation by macrophages stimulated with lipopolysaccharide were 1, 0.92 and 1.9 for P (IC50 = 126 nM), FP16CM, and FP16CMAc, respectively. Collectively, results suggest that the novel antedrugs are active anti-inflammatory agents. The 9 alpha-fluoro and 21-acetate substituent may contribute to enhanced topical potency, increased receptor binding affinity and inhibitory effects on NO generation. Inhibition of vasoactive NO may be one anti-inflammatory action of the steroidal antedrugs in vivo. Collectively, results suggest that these agents may be useful for topical application in allergic/inflammatory diseases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号