首页 | 本学科首页   官方微博 | 高级检索  
     

改进蚁群算法求解移动机器人路径规划
引用本文:张成,凌有铸,陈孟元. 改进蚁群算法求解移动机器人路径规划[J]. 电子测量与仪器学报, 2016, 30(11): 1758-1764. DOI: 10.13382/j.jemi.2016.11.018
作者姓名:张成  凌有铸  陈孟元
作者单位:安徽工程大学安徽省电气传动与控制重点实验室 芜湖241000
基金项目:2016年度安徽高校自然科学项目(KJ2016A794)
摘    要:
在全局静态环境下,提出一种改进蚁群算法,解决传统蚁群算法用于路径规划出现的收敛速性差、局部最优和求解质量差等不足。该算法引入障碍物排斥权重和新的启发因子到路径选择概率中,提高避障能力,增加路径选择的多样性;然后,设置局部信息素的阈值和限定范围更新局部信息素,采用交叉操作获取新路径,引入最优解和最差解,改变全局信息素的更新方式,提高全局搜索能力和解的质量,避免算法陷入局部最优。仿真结果表明,该算法能有效获得最优路径,在长度上比蚁群算法及其他算法分别减少了18%、5.7%和11%,算法迭代次数及运行时间都有所降低,提高了收敛速度和搜索能力。

关 键 词:路径规划  移动机器人  蚁群算法  信息素

Path planning of mobile robot based on an improved ant colony algorithm
Zhang Cheng,Ling Youzhu and Chen Mengyuan. Path planning of mobile robot based on an improved ant colony algorithm[J]. Journal of Electronic Measurement and Instrument, 2016, 30(11): 1758-1764. DOI: 10.13382/j.jemi.2016.11.018
Authors:Zhang Cheng  Ling Youzhu  Chen Mengyuan
Affiliation:Anhui Polytechnic University, Anhui Key Laboratory of Electric Drive and Control, Wuhu 241000, China,Anhui Polytechnic University, Anhui Key Laboratory of Electric Drive and Control, Wuhu 241000, China and Anhui Polytechnic University, Anhui Key Laboratory of Electric Drive and Control, Wuhu 241000, China
Abstract:
An improved ant colony algorithm is proposed to solve the deficiency of the traditional ant colony algorithm such as bad convergence, local optimum and poor quality for path planning under the global static environment. The algorithm introduces the obstacle repulsion weights and a new heuristic factor to path selection probability, which improves the ability of obstacle avoidance and increases the strength of the way selection diversity. Then, the value of local pheromone is set and the scope local pheromone update is defined, and the crossover operation is used to obtain a new path. Introducing the optimal solution and the worst solution, the global information pheromone updating method is changed to improve the global searching ability and solution quality and avoid falling into local optimum algorithm. The simulation results show that the algorithm can effectively obtain the optimal path, which is reduced by 11%, 5.7% and 18% in the length, respectively. The number of iteration and running time of the algorithm is reduced, and both the convergence speed and the search ability are improved.
Keywords:path planning  mobile robot  ant colony algorithm  pheromone
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号