首页 | 本学科首页   官方微博 | 高级检索  
     

基于颜色匹配和改进LBP的胶囊内镜视频缩减
引用本文:彭同胜,刘小燕,龚军辉,蒋笑笑. 基于颜色匹配和改进LBP的胶囊内镜视频缩减[J]. 电子测量与仪器学报, 2016, 30(9): 1379-1388. DOI: 10.13382/j.jemi.2016.09.012
作者姓名:彭同胜  刘小燕  龚军辉  蒋笑笑
作者单位:1. 湖南大学 电气与信息工程学院 长沙 410082;2. 湖南大学 电气与信息工程学院 长沙 410082; 湖南工程学院 电气信息学院 湘潭 411101
基金项目:国家自然科学基金(61374149),教育部博士点基金(20130161110010),湖南省自然科学基金(13JJA003),湖南省研究生科研创新项目(CX2016B128)
摘    要:针对胶囊内镜视频中存在大量的冗余图像,提出了一种基于颜色匹配和改进LBP的视频缩减算法。该算法首先将胶囊内镜图像转换到HSI空间并从中提取色彩信息,通过余弦角对相邻两帧的色彩信息进行相似性度量来实现颜色匹配。接着构建图像金字塔,用改进的LBP算子提取出多尺度的纹理特征,然后根据相邻两帧纹理统计的加权曼哈顿距离和纹理不同区域面积占全局的比例来进行纹理的相似性度量。最后采用级联分类器完成对图像的分类,将差异图像组建成精简视频从而实现视频缩减。实验结果表明,算法得到的召回率,准确率和综合性能指标分别达到了0.91,0.87和0.89,处理速度达0.055 s/帧。该算法与已有的算法相比,分类效果更好并且处理速度更快。

关 键 词:胶囊内镜  视频缩减  图像金字塔  局部二元模式  相似性度量  级联分类器

Capsule endoscopy video reduction based on color matching and improved LBP
Peng Tongsheng,Liu Xiaoyan,Gong Junhui and Jiang Xiaoxiao. Capsule endoscopy video reduction based on color matching and improved LBP[J]. Journal of Electronic Measurement and Instrument, 2016, 30(9): 1379-1388. DOI: 10.13382/j.jemi.2016.09.012
Authors:Peng Tongsheng  Liu Xiaoyan  Gong Junhui  Jiang Xiaoxiao
Affiliation:College of Electrical and Information Engineering, Hunan University, Changsha 410082, China,College of Electrical and Information Engineering, Hunan University, Changsha 410082, China,1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China;2. College of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411101, China and College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
Abstract:A capsule endoscopy video reduction algorithm based on color matching and improved LBP is proposed to solve the problem of a large number of redundant images in the video.First,the image is converted into HSI space, and the similarity of the feature is measured by cosine angle for color matching.Then,the image pyramid is constructed,from which multi-scale texture features are obtained by using the improved local binary pattern operator.The similarity measurement of the texture is conducted by computing weighted Manhattan distance of the texture feature between two successive frames and calculating the proportion of area with different texture.Finally, a cascade classifier is used to discard redundant images and select key frames (frames with different features),so that a reduced capsule endoscopy video is obtained.The experimental results show that three performance indices of the algorithm,i.e.recall,precision and F-measure are 0.91,0.87 and 0.89 respectively,and the processing speed reaches 0.055 seconds per frame.And this algorithm achieves a better classification result and faster processing speed than that of the existing algorithms.
Keywords:capsule endoscopy  video reduction  image pyramid  local binary pattern  similarity measurement  cascade classifier
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号