首页 | 本学科首页   官方微博 | 高级检索  
     


A simple method for estimating transient heat transfer in slab-on-ground floors
Authors:Zhipeng Zhong  James E Braun
Affiliation:Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, 140 S. Intramural Drive, West Lafayette, IN 47907-2031, USA
Abstract:The problem of calculating transient heat transfer in concrete floor slabs is complicated due to ground coupling, which can require the numerical solution of two or three-dimensional transient conduction equations. This paper presents a simplified method for calculating transient slab-on-ground heat transfer that can be incorporated within hourly simulation programs. The method assumes that there are two primary one-dimensional paths for heat transfer from a ground-coupled floor slab: (1) one-dimensional heat transfer from the perimeter of the slab to the ambient and (2) one-dimensional heat transfer between the slab interior surface and a portion of the soil beneath the slab. The perimeter heat transfer is assumed to occur at quasi-steady state and is characterized in terms of a perimeter heat loss factor (Fp). Transient heat transfer within the slab and ground are modeled using a simple thermal circuit employing three nodes with an adiabatic boundary condition at a specified depth within the soil underneath the slab. Although some simulation models consider this type of two-path model, there appears to be no validation of this approach and there is no guidance for specifying perimeter heat loss factors and underfloor soil depths and node locations for the thermal circuit. In the current paper, results from detailed two-dimensional finite-element models for typical floor constructions and soil properties were used to identify (1) locations for nodes within the slab and soil, (2) correlations for soil depth as a function of soil properties associated with the underfloor adiabatic boundary condition, and (3) correlations for perimeter heat loss factor as a function of soil properties and edge insulation levels for different constructions. Transient heat transfer results from the simple model compared well with results from the finite-element program for different floor constructions, edge insulation, soil properties, locations, and times of year.
Keywords:Transient heat transfer  Numerical method  Ground-coupled heat transfer  Perimeter heat loss
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号