首页 | 本学科首页   官方微博 | 高级检索  
     


A multidimensional model for annular gas-liquid flow
Authors:BN Kishore
Affiliation:Department of Chemical Engineering, Indian Institute of Technology, Madras, Chennai 600 036, India
Abstract:A finite volume method-based CFD model has been developed to simulate steady, turbulent, two-dimensional annular gas-liquid flow in a duct. The gas flow is treated as being equivalent to flow through a rough-walled duct. The effect of the liquid film on the gas phase is included in the form of modified wall functions which incorporate the well-known triangular relationship (Annular Two-Phase Flow, Pergamon Press, Oxford, 1970) that exists among wall shear stress, film flow rate and film thickness in annular flow. The presence of droplets is accounted for by solving an additional scalar transport equation for the mass fraction of the droplets. Entrainment and deposition of droplets are included as source term and boundary condition, respectively, in the mass fraction equation. It is shown that the resulting model, while retaining simplicity of formulation, gives good predictions of the literature data of annular flow parameters under equilibrium and non-equilibrium conditions.
Keywords:Gas-liquid flow  Annular flow  Computational fluid dynamics  Interfacial friction  Entrainment  Modelling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号