首页 | 本学科首页   官方微博 | 高级检索  
     


Multi-mode low-dimensional models for non-isothermal homogeneous and catalytic reactors
Authors:Saikat Chakraborty
Affiliation:Department of Chemical Engineering, University of Houston, Houston, TX 77204-4004, USA
Abstract:A systematic procedure based on the Liapunov-Schmidt method of bifurcation theory is used to derive low-dimensional models for different types of non-isothermal homogeneous, catalytic and coupled homogeneous-heterogeneous reactors. These low-dimensional models are described by multiple concentration and temperature modes (variables), each of which is representative of a physical scale of the system. These “multi-mode models” capture mass and thermal micromixing as exchange of material and energy, respectively, between the modes (scales). The multi-mode models retain all the parameters and most of the qualitative features of the full convection-diffusion-reaction equations. While in the limit of vanishingly small local heat and mass diffusion times, they reduce to the classical ideal pseudo-homogeneous reactor models, they are also capable of capturing the mixing or mass (and/or heat) transfer-limited asymptotes for the case of fast reactions. We illustrate the usefulness of the multi-mode models in predicting mixing and selectivity effects on reactor performance and the influence of local transport effects on reactor runaway and bifurcation behavior for the case of non-isothermal homogeneous and catalytic reactors.
Keywords:Low-dimensional models  Liapunov-Schmidt method  Micromixing  Non-isothermal  Spatial averaging  Multi-scale method
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号