首页 | 本学科首页   官方微博 | 高级检索  
     


Dual‐Layered Film Protected Lithium Metal Anode to Enable Dendrite‐Free Lithium Deposition
Authors:Chong Yan  Xin‐Bing Cheng  Yang Tian  Xiang Chen  Xue‐Qiang Zhang  Wen‐Jun Li  Jia‐Qi Huang  Qiang Zhang
Affiliation:1. Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China;2. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China;3. Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, China;4. Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
Abstract:Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short‐circuit and thermal runaway of the rechargeable batteries. Herein, a dual‐layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual‐layered feature with organic components (ROCO2Li and ROLi) on the top and abundant inorganic components (Li2CO3 and LiF) in the bottom. The dual‐layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. This work demonstrates the concept of rational construction of dual‐layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.
Keywords:dendrite‐free electrode  fluoroethylene carbonate  lithium fluoride  lithium metal anode  rechargeable batteries
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号