首页 | 本学科首页   官方微博 | 高级检索  
     


O‐, N‐Atoms‐Coordinated Mn Cofactors within a Graphene Framework as Bioinspired Oxygen Reduction Reaction Electrocatalysts
Authors:Yang Yang  Kaitian Mao  Shiqi Gao  Hao Huang  Guoliang Xia  Zhiyu Lin  Peng Jiang  Changlai Wang  Hui Wang  Qianwang Chen
Affiliation:1. Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, P. R. China;2. High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, The Anhui Key Laboratory of Condensed Mater Physics at Extreme Conditions, Hefei, P. R. China
Abstract:Manganese (Mn) is generally regarded as not being sufficiently active for the oxygen reduction reaction (ORR) compared to other transition metals such as Fe and Co. However, in biology, manganese‐containing enzymes can catalyze oxygen‐evolving reactions efficiently with a relative low onset potential. Here, atomically dispersed O and N atoms coordinated Mn active sites are incorporated within graphene frameworks to emulate both the structure and function of Mn cofactors in heme–copper oxidases superfamily. Unlike previous single‐metal catalysts with general M‐N‐C structures, here, it is proved that a coordinated O atom can also play a significant role in tuning the intrinsic catalytic activities of transition metals. The biomimetic electrocatalyst exhibits superior performance for the ORR and zinc–air batteries under alkaline conditions, which is even better than that of commercial Pt/C. The excellent performance can be ascribed to the abundant atomically dispersed Mn cofactors in the graphene frameworks, confirmed by various characterization methods. Theoretical calculations reveal that the intrinsic catalytic activity of metal Mn can be significantly improved via changing local geometry of nearest coordinated O and N atoms. Especially, graphene frameworks containing the Mn‐N3O1 cofactor demonstrate the fastest ORR kinetics due to the tuning of the d electronic states to a reasonable state.
Keywords:bioinspiration  electrocatalysis  metal–  organic frameworks  single atoms
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号