首页 | 本学科首页   官方微博 | 高级检索  
     


Conformational studies on the selectin and natural killer cell receptor ligands sulfo- and sialyl-lacto-N-fucopentaoses (SuLNFPII and SLNFPII) using NMR spectroscopy and molecular dynamics simulations. Comparisons with the nonacidic parent molecule LNFPII
Authors:H Kogelberg  TA Frenkiel  SW Homans  A Lubineau  T Feizi
Affiliation:MRC Glycosciences Laboratory, Northwick Park Hospital, Harrow, Middlesex, U.K.
Abstract:This investigation is focused on the conformational behavior of the blood group Lewisa (Le(a)-active pentasaccharide lacto-N-fucopentaose II (LNFPII) and its sulfated and sialylated analogs, SuLNFPII and SLNFPII. The latter two are more potent oligosaccharide ligands for the animal lectins, E- and L-selectin, and the natural killer cell receptor, NKR-P1, than are the shorter chain analogs based on the trisaccharide Le(a) domain. We report here that the three oligosaccharides based on the fucopentasaccharide have very similar average solution conformations as determined from NMR spectroscopical parameters, in particular 13C chemical shift differences. From restrained simulated annealing and restrained molecular dynamics (MD) simulations performed in order to determine the most probable conformational distributions around the glycosidic linkages we derive models for these oligosaccharides that are in good agreement with experimental parameters, such as rotating-frame Overhauser effects (ROE's) and long-range 1H,13C coupling constants across the glycosidic linkages. In these model structures the Le(a) domain at the non-reducing end of the longer chain oligosaccharides approximates the same rigid structure as in the shorter analogs. The Gal beta 1-4Glc linkage at the reducing end is also rather rigid, showing only little more flexibility than the Le(a) domain. However, the NeuAc alpha 2-3Gal linkage in SLNFPII, and the GlcNAc beta 1-3Gal linkage in all three oligosaccharides are flexible, in each case fluctuating mainly between two minimum energy structures: (phi = -81 degrees, psi = 8 degrees) and (phi = -160 degrees, psi = -20 degrees) for the NeuAc alpha 2-3Gal linkage, as reported previously for the isomeric sequence 3'-sialyl Le(x), and (phi = -25 degrees, psi = -26 degrees) and (phi = 20 degrees, psi = 24 degrees) for the GlcNAc beta 1-3Gal linkage. The flexibility of the latter linkage may allow the lactosyl domain at the reducing end to fit with little strain into extended carbohydrate binding sites on the recognition proteins, and, for the purposes of drug designs, it will be important to establish which conformational distribution is assumed for the GlcNAc beta 1-3Gal linkage in these longer chain oligosaccharides in the bound state.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号