首页 | 本学科首页   官方微博 | 高级检索  
     


Flow structure and thickness of annular downflow layer in a circulating fluidized bed riser
Authors:Sung Won Kim
Affiliation:Department of Chemical and Biological Engineering, University of British Columbia, 2216 Main Mall, Vancouver, BC, Canada V6T 1Z4
Abstract:Flow structures were determined in a circulating fluidized bed (CFB) riser (0.203 m i.d.×5.9 m high) of FCC particles (dp=70 μm, ρs=1700 kg/m3). A momentum probe was used to measure radial momentum flux profiles at several levels and to distinguish between upward and downward flow regions. Time-mean dynamic pressure (ΔPm) decreases towards the wall in the range Ug=5-8 m/s, Gs=10-340 kg/m2 s. The thickness of the annular downflow layer based on ΔPm=0 reaches a maximum with increasing height. The annular downflow layer disappears locally with increasing solids mass flux (Gs) at a constant gas velocity, with achievement of the dense suspension upflow (DSU) regime. A new correlation is developed to predict the time-mean thickness of solids down-flowing layer based on solids mass flux and momentum flux. It successfully accounts for the variation of the annular layer thickness with height and Gs, and covers a wide Gs range right up to near the onset of the DSU regime.
Keywords:Circulating fluidized bed   Fast fluidization   Hydrodynamics   Core-annulus structure   Annular downflow layer thickness   Momentum probe
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号