Semi-passive replication and Lazy Consensus |
| |
Authors: | Xavier D fago,Andr Schiper, |
| |
Affiliation: | aSchool of Information Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Tatsunokuchi, Nomi, Ishikawa 923-1292, Japan;bPRESTO, Japan Science and Technology Agency (JST), Japan;cFaculté Informatique et Communications, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland |
| |
Abstract: | This paper presents two main contributions: semi-passive replication and Lazy Consensus. The former is a replication technique with parsimonious processing. It is based on the latter; a variant of Consensus allowing the lazy evaluation of proposed values.Semi-passive replication is a replication technique with parsimonious processing. This means that, in the normal case, each request is processed by only one single process. The most significant aspect of semi-passive replication is that it requires a weaker system model than existing techniques of the same family. For semi-passive replication, we give an algorithm based on the Lazy Consensus.Lazy Consensus is a variant of the Consensus problem that allows the lazy evaluation of proposed values, hence the name. The main difference with Consensus is the introduction of an additional property of laziness. This property requires that proposed values are computed only when they are actually needed. We present an algorithm based on Chandra and Toueg's Consensus algorithm for asynchronous distributed systems with a S failure detector. |
| |
Keywords: | Replication techniques Fault tolerance High availability Failure detectors Asynchronous systems Consensus Group membership Distributed systems |
本文献已被 ScienceDirect 等数据库收录! |
|