首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water
Authors:Hotze Ernest M  Labille Jerome  Alvarez Pedro  Wiesner Mark R
Affiliation:Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708-0287, USA.
Abstract:Buckminsterfullerene (C60) is a known photosensitizer that produces reactive oxygen species (ROS) in the presence of light; however, its properties in aqueous environments are still not well understood or modeled. In this study, production of both singlet oxygen and superoxide by UV photosensitization of colloidal aggregates of C60 in water was measured by two distinct methods: electron paramagnetic resonance (EPR) with a spin trapping compound, and spectrophotometric detection of the reduced form of the tetrazolium compound XTT. Both singlet oxygen and superoxide were generated by fullerol suspensions while neither was detected in the aqu/nC60 suspensions. A mechanistic framework for photosensitization that takes into account differences in C60 aggregate structure in water is proposed to explain these results. While theory developed for single molecules suggests that alterations to the C60 cage should reduce the quantum yield for the triplet state and associated ROS production, the failure to detect ROS production by aqu/nC60 is explained in part by a more dense aggregate structure compared with the hydroxylated C60.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号