首页 | 本学科首页   官方微博 | 高级检索  
     


Hypertrophy of Rat Skeletal Muscle Is Associated with Increased SIRT1/Akt/mTOR/S6 and Suppressed Sestrin2/SIRT3/FOXO1 Levels
Authors:Zoltan Gombos  Erika Koltai  Ferenc Torma  Peter Bakonyi  Attila Kolonics  Dora Aczel  Tamas Ditroi  Peter Nagy  Takuji Kawamura  Zsolt Radak
Affiliation:1.Research Center of Molecular Exercise Science, University of Physical Education, H-1123 Budapest, Hungary; (Z.G.); (E.K.); (F.T.); (P.B.); (A.K.); (D.A.);2.Department of Molecular Immunology and Toxicology, National Institute of Oncology, H-1122 Budapest, Hungary; (T.D.); (P.N.);3.Department of Anatomy and Histology, University of Veterinary Medicine, H-1078 Budapest, Hungary;4.Faculty of Sport Sciences, Waseda University, Tokorozawa 2-579-15, Japan;
Abstract:Despite the intensive investigation of the molecular mechanism of skeletal muscle hypertrophy, the underlying signaling processes are not completely understood. Therefore, we used an overload model, in which the main synergist muscles (gastrocnemius, soleus) of the plantaris muscle were surgically removed, to cause a significant overload in the remaining plantaris muscle of 8-month-old Wistar male rats. SIRT1-associated pro-anabolic, pro-catabolic molecular signaling pathways, NAD and H2S levels of this overload-induced hypertrophy were studied. Fourteen days of overload resulted in a significant 43% (p < 0.01) increase in the mass of plantaris muscle compared to sham operated animals. Cystathionine-β-synthase (CBS) activities and bioavailable H2S levels were not modified by overload. On the other hand, overload-induced hypertrophy of skeletal muscle was associated with increased SIRT1 (p < 0.01), Akt (p < 0.01), mTOR, S6 (p < 0.01) and suppressed sestrin 2 levels (p < 0.01), which are mostly responsible for anabolic signaling. Decreased FOXO1 and SIRT3 signaling (p < 0.01) suggest downregulation of protein breakdown and mitophagy. Decreased levels of NAD+, sestrin2, OGG1 (p < 0.01) indicate that the redox milieu of skeletal muscle after 14 days of overloading is reduced. The present investigation revealed novel cellular interactions that regulate anabolic and catabolic processes in the hypertrophy of skeletal muscle.
Keywords:overload-induced hypertrophy  skeletal muscle  anabolic signaling pathways  redox regulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号