首页 | 本学科首页   官方微博 | 高级检索  
     


Design and analysis of novel micro displacement amplification mechanism actuated by chevron shaped thermal actuators
Authors:Iqbal  Sohail  Malik  Afzaal A  Shakoor  Rana I
Affiliation:1.Department of Mechanical and Aerospace Engineering, Institute of Avionics and Aeronautics, Air University, Islamabad, Pakistan
;2.Department of Mechatronics Engineering, Air University, Islamabad, Pakistan
;
Abstract:

This paper presents design and analysis of microelectromechanical system (MEMS) based displacement amplification mechanism actuated using thermal actuators with enhanced performance. The proposed model consists of chevron shaped thermal actuators, an amplification mechanism capable of amplifying displacement 20 times and an electrostatic comb drives for sensing displacements. When voltage is applied to thermal chevrons, displacement is produced which is then amplified 20 times. Steady state static thermal electrical analysis is performed under variable resistivity and voltage bias of 2 V. In-plane reaction forces of magnitude 194.2 and 150.91 µN along X and Y-axis, respectively, thus producing displacement of 0.11 and 2.22 µm along X and Y-axis, respectively. Time domain simulations of device are carried with constant electrical resistivity, variable voltage and convective boundary conditions. Modal analysis of the mechanism is carried out to predict the natural frequencies and associated mode shapes of mechanism during free vibrations. The desired mode is at frequency of 286.160 kHz. Dynamic simulations including direct integration-transient, transient modal and steady state modal analysis are performed on the device for time span of 0.0006 s, under application of 25 g and frequency range of 200–300 kHz. Simulation results prove the viability of the mechanism as an amplification device with enhanced voltage–stroke ratio.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号