首页 | 本学科首页   官方微博 | 高级检索  
     

基于类间散布矩阵的二维主分量分析
引用本文:张生亮,陈伏兵,谢永华,杨静宇. 基于类间散布矩阵的二维主分量分析[J]. 计算机工程, 2006, 32(11): 44-46
作者姓名:张生亮  陈伏兵  谢永华  杨静宇
作者单位:南京理工大学计算机系,南京,210094;山西财经大学信息与管理学院,太原,030006;南京理工大学计算机系,南京,210094
摘    要:主分量分析是一种线性特征抽取方法,被广泛地应用在人脸等图像识别领域。但传统的PCA都以总体散布矩阵作为产生矩阵,并且要将作为图像的矩阵转换为列向量进行计算。该文给出了一种利用图像矩阵直接计算的二维PCA,以类间散布矩阵的本征向量作为投影方向,取得了比利用总体散布矩阵更好的识别效果,并且特征抽取速度更快。在ORL和NUSTFDBⅡ标准人脸库上的实验验证了该方法的有效性。

关 键 词:主分量分析  特征抽取  本征脸  人脸识别
文章编号:1000-3428(2006)11-0044-03
收稿时间:2005-08-01
修稿时间:2005-08-01

A Two-dimensional PCA Based on Between-class Scatter Matrix
ZHANG Shengliang,CHEN Fubing,XIE Yonghua,YANG Jingyu. A Two-dimensional PCA Based on Between-class Scatter Matrix[J]. Computer Engineering, 2006, 32(11): 44-46
Authors:ZHANG Shengliang  CHEN Fubing  XIE Yonghua  YANG Jingyu
Affiliation:1. Department of Computer Science, Nanjing University of Science & Technology, Nanjing 210094; 2. College of Information and Management, Shanxi Finance and Economics University, Taiyuan 030006
Abstract:Principal component analysis (PCA) is an important method widely used in images data compression and feature extraction. But conventional PCA usually uses total scatter matrix as a generation matrix, and two-dimension (2D) image matrices must be transformed into vectors. This paper gives a 2D-PCA, which uses original image matrices to compute between-class covariance matrix and its eigenvectors are derived for images feature extraction. The experiments on ORL and NUSTFDBⅡface-databases indicate that the recognition rates are higher than PCA and 2D-PCA using total scatter matrix, and the speed of feature extraction is faster.
Keywords:Principal component analysis(PCA)  Feature extraction  Eigenfaces  Face recognition
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号