首页 | 本学科首页   官方微博 | 高级检索  
     


Symplectic Simulations of Radial Diffusion of Fast Alpha Particles in the Presence of Low-Frequency Modes in Rippled Tokamaks
Authors:Majid Khan  K. Schoepf  V. Goloborod’ko  Zheng-Mao Sheng
Affiliation:1.Department of Physics, Institute of Fusion Theory and Simulations,Zhejiang University,Hangzhou,China;2.Department of Physics,Quaid-i-Azam University Islamabad,Islamabad,Pakistan;3.Institute of Theoretical Physics,University of Innsbruck, Association EURATOM-OEAW,Innsbruck,Austria;4.Institute of Nuclear Research,Ukrainian Academy of Sciences,Kiev,Ukraine
Abstract:The symplectic Hamiltonian guiding centre code which enables efficient calculation of charged particle trajectories and diffusion coefficients has been applied to fast ion motion in magnetically perturbed tokamak plasmas. Particularly fusion born alpha particle drift motion, in constant of motion space, is examined in the presence of low mode-number neoclassical tearing mode (NTM) perturbation in a toroidally rippled tokamak. The main focus of this study is to investigate the dependence of the radial diffusion coefficient of energetic ions on the perturbation strength and on the localization of the perturbation. The resonance between bounce motion and toroidal field ripples plays a significant role in this context. The presence of NTMs results in substantial enhancement of radial diffusion coefficient for passing particles. Depending on the strength and localization of the NTM it can cause enhancement or degradation of the radial ripple diffusion coefficient of trapped particles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号