首页 | 本学科首页   官方微博 | 高级检索  
     

贝叶斯判别法在煤与瓦斯突出预测中的应用
引用本文:崔光磊,熊伟. 贝叶斯判别法在煤与瓦斯突出预测中的应用[J]. 煤炭工程, 2013, 0(3): 96-98
作者姓名:崔光磊  熊伟
作者单位:中国矿业大学安全工程学院,江苏徐州,221116
摘    要:
煤与瓦斯突出影响因素多,难以为其建立合适的多指标非线性预测模型,为提高突出预测的准确性和增强预测预报方法的实用性,文章选用瓦斯压力、瓦斯放散速度等多项影响判别因子,建立了基于贝叶斯判别分析煤与瓦斯突出的判别模型,通过对22组样本的学习和6组样本的预测,验证了该方法在煤与瓦斯判别中具有较高的准确性.

关 键 词:煤与瓦斯突出  贝叶斯判别  正态总体

Bayesian discrimination analysis in coal and gas outburst prediction
Abstract:
The factors affecting coal and gas outburst are so many that it is difficult to establish an appropriate non-linear prediction model with many indicators for it.In order to improve the accuracy of forecast and enhance the practicability of prediction method,a coal and gas outburst prediction model was established by Bayesian discrimination suing gas pressure, gas diffuse rate and number of impact factors. Through the study of twenty-two samples and forecast of six samples, this method is verified with high accuracy in the coal and gas discrimination
Keywords:coal and gas outburst  Bayesian discrimination  normal population
本文献已被 万方数据 等数据库收录!
点击此处可从《煤炭工程》浏览原始摘要信息
点击此处可从《煤炭工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号