首页 | 本学科首页   官方微博 | 高级检索  
     

噪声环境下智能机器人语音控制特征提取方法
引用本文:谢怡宁,黄金杰,何勇军. 噪声环境下智能机器人语音控制特征提取方法[J]. 北京邮电大学学报, 2013, 36(3): 83-87. DOI: 10.13190/jbupt.201303.86.003
作者姓名:谢怡宁  黄金杰  何勇军
作者单位:哈尔滨理工大学 计算机科学与技术学院, 哈尔滨 150080
基金项目:国家自然科学基金项目( 60575036); 黑龙江省教育厅科研项目(12511101,12511096)
摘    要:针对机器人的应用场合通常存在各种噪声干扰的问题,提出了一种基于稀疏编码的语音特征提取方法.利用稀疏编码能稀疏表示语音的特性,在梅尔频域对语音增强后提取特征,将稀疏去噪与语音特征提取相融合,实现了混噪语音的有效补偿.在预设场景中的实验结果表明,与现有特征提取方法相比,所提出的语音特征提取方法能有效降低噪声对语音特征的影响,提高机器人语音控制的性能.

关 键 词:机器人控制  特征提取  语音识别  稀疏编码  区分性
收稿时间:2012-11-19

Speech Control Feature Extraction for Intelligent Robotics Under Noisy Environments
XIE Yi-ning,HUANG Jin-jie,HE Yong-jun. Speech Control Feature Extraction for Intelligent Robotics Under Noisy Environments[J]. Journal of Beijing University of Posts and Telecommunications, 2013, 36(3): 83-87. DOI: 10.13190/jbupt.201303.86.003
Authors:XIE Yi-ning  HUANG Jin-jie  HE Yong-jun
Affiliation:Department Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
Abstract:Despite of significant progress on speech recognition, current techniques cannot satisfy the demands of real applications in robot controls, the main reason is that various noises in environments of robot control substantially degrade the performance of speech recognition. A feature extraction method is proposed based on sparse coding. This method makes use of the de-noising merit of sparse coding and extracts features after removing noise in Mel-frequency domain. Such a strategy integrates spare coding into speech feature extraction and can reduce the effect of noise. Experiments in speech recognition tasks show that the feature proposed possesses strong robustness against various noises and improves the performance of speech recognition in noisy environments.
Keywords:robot control  feature extraction  speech recognition  sparse coding  discriminative
本文献已被 CNKI 等数据库收录!
点击此处可从《北京邮电大学学报》浏览原始摘要信息
点击此处可从《北京邮电大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号