首页 | 本学科首页   官方微博 | 高级检索  
     


Arginine vasopressin triggers intracellular calcium release, a calcium-activated potassium current and exocytosis in identified rat corticotropes
Authors:A Tse  AK Lee
Affiliation:Department of Pharmacology, University of Alberta, Edmonton, Canada. amy.tse@ualberta.ca
Abstract:Arginine vasopressin (AVP) stimulates the secretion of ACTH from pituitary corticotropes. We investigated the action of AVP in single corticotropes of male rats. Corticotropes were identified with the reverse hemolytic plaque assay using antibodies against ACTH. Using the whole-cell recording technique in conjunction with the fluorescent Ca2+ indicator, indo-1 to measure the concentration of cytosolic free Ca2+ (Ca2+]i), we show that AVP triggers a transient and plateau pattern of Ca2+ signal. The Ca2+]i elevation activates the apamin-sensitive Ca2+-activated K+ current, which, in turn, causes membrane hyperpolarization. The Ca2+ signal can be elicited in the absence of extracellular Ca2+ and is mimicked by intracellular inositol 1,4,5-trisphosphate (IP3). Both GDP-beta-S and heparin inhibit the AVP response. Thus, AVP triggers intracellular Ca2+ release from the (IP3)-sensitive store via a GTP binding protein-coupled phosphoinositide pathway. Using the high temporal resolution capacitance measurement to detect exocytosis in single corticotropes, we show that a burst of exocytosis is evoked during the AVP-triggered Ca2+]i elevation. Exocytosis can also be triggered when Ca2+ is released directly from the IP3-sensitive store via flash photolysis of caged IP3. We conclude that AVP-stimulated ACTH secretion in rat corticotrophs is closely coupled to intracellular Ca2+ release from the IP3-sensitive store.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号