首页 | 本学科首页   官方微博 | 高级检索  
     

基于局部主成分分析的协同过滤推荐模型
引用本文:郁雪,李敏强. 基于局部主成分分析的协同过滤推荐模型[J]. 计算机工程, 2010, 36(14): 37-39
作者姓名:郁雪  李敏强
作者单位:天津大学管理与经济学部信息管理与信息系统系,天津,300072
基金项目:高等学校博士学科点专项科研基金 
摘    要:根据传统协同过滤算法中用户数据的高维稀疏特点,提出一种基于局部主成分分析协同过滤推荐模型,采用基于语义分类和主成分分析的二阶段降维技术,分别对各类主题页面进行局部降维处理,以保留对某类主题真正感兴趣的用户群,加速最近邻的搜索过程。通过对真实Web日志数据的测试,证明该模型具有较高的预测精度。

关 键 词:推荐系统  协同过滤算法  维数约简  局部主成分分析

Collaborative Filtering Recommendation Model Based on Local Principle Component Analysis
YU Xue,LI Min-qiang. Collaborative Filtering Recommendation Model Based on Local Principle Component Analysis[J]. Computer Engineering, 2010, 36(14): 37-39
Authors:YU Xue  LI Min-qiang
Affiliation:(Dept. of Information Management and Information System, School of Management, Tianjin University, Tianjin 300072)
Abstract:According to the high dimensionality and sparsity of rating matrix in traditional collaborative filtering recommendation system, a new collaborative filtering recommendation model based on Local Principle Component Analysis(LPCA) is proposed which combines taxonomy technique and local principle component analysis method to make dimension reduction for different subject genre respectively, and remains the real interested users in one specific subject of the Web pages which accelerates the neighbor searching process. Experiment on real log data indicates the new model can improve the predication quality.
Keywords:recommendation system  collaborative filtering algorithm  dimensionality reduction  Local Principle Component Analysis(LPCA)
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号