首页 | 本学科首页   官方微博 | 高级检索  
     

复杂地质条件下高拱坝整体稳定研究与软弱结构强度弱化效应影响分析
引用本文:肖珍珍,张林,黄刚海,李征,胡海洋. 复杂地质条件下高拱坝整体稳定研究与软弱结构强度弱化效应影响分析[J]. 四川大学学报(工程科学版), 2016, 48(Z2): 20-26
作者姓名:肖珍珍  张林  黄刚海  李征  胡海洋
作者单位:四川大学 水力学与山区河流开发保护国家重点实验室、水利水电学院,四川大学 水力学与山区河流开发保护国家重点实验室、水利水电学院,四川大学 水力学与山区河流开发保护国家重点实验室、水利水电学院,四川大学 水力学与山区河流开发保护国家重点实验室、水利水电学院,四川大学 水力学与山区河流开发保护国家重点实验室、水利水电学院
基金项目:多个基金项目:请在下栏中列出所有明细(含项目号和具体课题名)
摘    要:锦屏一级高拱坝坝高库大,坝址区地质条件复杂,坝与地基整体稳定问题突出。工程蓄水运行后,坝肩结构面及软弱岩体的强度在高应力、强渗压的长期作用下将降低,对拱坝整体稳定更为不利。为评价加固后工程安全性,由水岩耦合三轴试验得到各软弱结构面强度在不同条件下的弱化率,并在此基础上采用综合法地质力学模型试验。由于试验技术限制,对结构面无法实现分区降低破碎带及影响带强度,综合各方面因素,模型试验最终采用破碎带统一降强30%的弱化方案。针对软弱结构面强度弱化效应对整体稳定的影响,采用三维非线性有限元软件对破碎带统一降强30%(方案一)和破碎带及影响带分区降强(方案二)进行计算分析,通过对比两方案计算结果,正常工况下方案二坝体变位较方案一增加幅度约-0.2%~2.24%,坝肩变位值较方案一增加幅度约-2.35%~1.72%,超载工况下坝体变位增加幅度约-4.68%~9.23%。两方案下坝体及坝肩抗力体变位、破坏过程及机理规律相似,量值相近,且试验与计算成果相近。综合分析认为,锦屏一级拱坝模型试验采用在破碎带统一降强30%来模拟破碎带及影响带分别降强是合理可行的,试验成果是可靠的。

关 键 词:高拱坝、整体稳定、地质力学模型试验、有限元分析、强度弱化
收稿时间:2015-08-24
修稿时间:2016-01-18

Research on high arch dam overall stability under complicated geological conditions and the impact analysis on weakening effect of weak structure strength
zhanglin,and. Research on high arch dam overall stability under complicated geological conditions and the impact analysis on weakening effect of weak structure strength[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(Z2): 20-26
Authors:zhanglin  and
Affiliation:State Key Laboratory of Hydraulics and Mountain River Development and Protection, College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China,,,
Abstract:The Jinping I high arch dam has great height and large library, its overall stability of the dam and foundation is a prominent problem due to the complex geological conditions in the dam site area. After the impounding and operation of project, the strength of abutment structure surface and weak rock will drop due to the long-term effects of high stress and strong osmotic pressure, which is more adverse to the overall stability of the dam. In order to evaluate the engineering safety after reinforcement, the weakening rate of the weak structure strength under different conditions were obtained by the water-rock coupling triaxial test. On this basis, the geological mechanics model test with synthetic method has been conducted. Due to test technical limitations, it is temporarily unable to decrease the strength of fracture zone and influenced zone separately on structural planes. Considering the factors, the weakening scheme with a average weakening rate 30% of fracture zone was conducted at last in model test. In order to explore the influence of weakening effect of weak structural plane strength to overall stability, 3D nonlinear finite element calculation and analysis has been done, one strength reduction program is a average weakening rate 30% of fracture zone ( scheme 1) , and the other is to decrease the strength of fracture zone and influenced zone separately (scheme 2). Comparing the calculation results with the two schemes, under normal operating conditions, displacements of the dam of scheme two is greater than scheme one about -0.2%~2.24% , abutment displacement value is greater than scheme one about -2.35%~1.72%,and displacements of the dam is greater than scheme one about -4.68%~9.23% under overload conditions. The displacement of dam and abutment resistance body, failure process and mechanism of the two schemes are similar, the numerical values are basically the same, the test and calculation results are similar. For model test of Jinping I high arch dam, using the plan which concentrately reducing the strength 30% of broken zone to imitate the plan which reducing the strength of broken zone and the influenced zone separately can be considered as according with the actual situation and reasonably practicable, its test results are reliable.
Keywords:high arch dam   overall stability   geomechanical model test   finite element analysis   strength weakening
点击此处可从《四川大学学报(工程科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(工程科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号