首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进AHP-BP神经网络的幼儿发展评价模型
引用本文:李顺喜,蒲宝明,韩爽,李相泽,张笑东,王帅. 基于改进AHP-BP神经网络的幼儿发展评价模型[J]. 计算机系统应用, 2018, 27(3): 168-172
作者姓名:李顺喜  蒲宝明  韩爽  李相泽  张笑东  王帅
作者单位:中国科学院大学, 北京 100049;中国科学院 沈阳计算技术研究所, 沈阳 110168,中国科学院 沈阳计算技术研究所, 沈阳 110168,中国科学院大学, 北京 100049;中国科学院 沈阳计算技术研究所, 沈阳 110168,东北大学 计算机科学与工程学院, 沈阳 110819,中国科学院大学, 北京 100049;中国科学院 沈阳计算技术研究所, 沈阳 110168,中国科学院大学, 北京 100049;中国科学院 沈阳计算技术研究所, 沈阳 110168
摘    要:现有的幼儿健康发展评估方案有着评估周期长、个人主观意识强以及评价指标单一等缺陷,对幼儿的长期发展以及学前教育的信息化有着诸多方面的限制和影响.因此,本文引入了改进的AHP-BPNN评估方法,根据幼儿发展的生理和心理特性,利用AHP层次分析方法建立科学的、多维化的评价体系,同时对各项评价指标初始化;利用改进的BPNN对评价指标权重进行分析和优化,得到最优的参数解.通过对沈阳某幼儿园214名幼儿90天的连续实践观察表明,本文所提的方法大大减少了教师的主观性评价,使评价体系更加科学、合理和完善,对幼儿健康发展给出了全面性的指导.

关 键 词:幼儿  健康评估模型  层次分析方法  BP神经网络
收稿时间:2017-06-27
修稿时间:2017-07-10

Preschool Child Health Assessment Model Based on Improved AHP-BPNN
LI Shun-Xi,PU Bao-Ming,HAN Shuang,LI Xiang-Ze,ZHANG Xiao-Dong and WANG Shuai. Preschool Child Health Assessment Model Based on Improved AHP-BPNN[J]. Computer Systems& Applications, 2018, 27(3): 168-172
Authors:LI Shun-Xi  PU Bao-Ming  HAN Shuang  LI Xiang-Ze  ZHANG Xiao-Dong  WANG Shuai
Affiliation:University of Chinese Academy of Sciences, Beijing 100049, China;Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China,Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China,University of Chinese Academy of Sciences, Beijing 100049, China;Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China,School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China,University of Chinese Academy of Sciences, Beijing 100049, China;Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China and University of Chinese Academy of Sciences, Beijing 100049, China;Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China
Abstract:The existing healthy development evaluation scheme has defects like a long life cycle, subjective sense, single evaluation index and many others, which has restrictions on the children''s long-term development and preschool education informatization. Therefore, this paper introduces the evaluation method of AHP-BPNN. According to the physiological and psychological characteristics of children''s development, it uses the AHP analytic hierarchy process to establish scientific and multidimensional evaluation system. Meanwhile, the initial weights is initialized. Then it makes the improved BPNN analysis to optimize the weight, to get a more optimal parameter solution. Based on the continuous practice of 214 children in a kindergarten in Shenyang for 90 days of observation, it shows that the proposed method greatly reduces the subjectivity of teacher evaluation, makes the evaluation system more scientific, reasonable and perfect, and gives a comprehensive guide.
Keywords:preschool child  health assessment model  AHP  BP neural network
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号