首页 | 本学科首页   官方微博 | 高级检索  
     


Heterologous biosynthesis and characterization of the [2Fe-2S]-containing N-terminal domain of Clostridium pasteurianum hydrogenase
Authors:M Atta  ME Lafferty  MK Johnson  J Gaillard  J Meyer
Affiliation:Département de Biologie Moléculaire et Structurale, CEA-Grenoble, France.
Abstract:The primary structure of Clostridium pasteurianum hydrogenase I appears to be composed of modules suggesting that the various iron-sulfur clusters present in this enzyme might be segregated in structurally distinct domains. On the basis of this observation, a gene fragment encoding the 76 N-terminal residues of this enzyme has been expressed in Escherichia coli. The polypeptide thus produced contains a 2Fe-2S]n+ cluster of which the oxidized level (n = 2) has been monitored by UV-visible absorption, circular dichroism, and resonance Raman spectroscopy. This cluster can be reduced by dithionite or electrochemically to the n = 1 level which has been investigated by EPR and by low-temperature magnetic circular dichroism. The redox potential of the +2 to +1 transition is -400 mV (vs the normal hydrogen electrode). The spectroscopic and redox results indicate a 2Fe-2S]2+/+ chromophore coordinated by four cysteine ligands in a protein fold similar to that found in plant- and mammalian-type ferredoxins. Among the five cysteines present in the N-terminal hydrogenase fragment, four (in positions 34, 46, 49, and 62) are conserved in other sequences and are therefore the most likely ligands of the 2Fe-2S] site. The fifth cysteine, in position 39, can be dismissed on the grounds that the Cys39Ala mutation does not alter any of the properties of the iron-sulfur cluster. The spectroscopic signatures of this chromophore are practically identical with some of those reported for full-size hydrogenase. This confirms that C. pasteurianum hydrogenase I contains a 2Fe-2S] cluster and indicates that the polypeptide fold around the metal site of the N-terminal fragment is very similar, if not identical, to that occurring in the full-size protein. The N-terminal sequence of this hydrogenase is homologous to sequences of a number of proteins or protein domains, including a subunit of NADH-ubiquinone oxidoreductase of respiratory chains. From that, it can be anticipated that the structural domain isolated and described here is a building block of electron transfer complexes involved in various bioenergetic processes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号