首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical weld modeling — a method for calculating weld-induced residual stresses
Authors:S Fricke  E Keim  J Schmidt  
Abstract:In the past, weld-induced residual stresses caused damage to numerous (power) plant parts, components and systems (Erve, M., Wesseling, U., Kilian, R., Hardt, R., Brümmer, G., Maier, V., Ilg, U., 1994. Cracking in Stabilized Austenitic Stainless Steel Piping of German Boiling Water Reactors — Characteristic Features and Root Causes. 20. MPA-Seminar 1994, vol. 2, paper 29, pp.29.1–29.21). In the case of BWR nuclear power plants, this damage can be caused by the mechanism of intergranular stress corrosion cracking in austenitic piping or the core shroud in the reactor pressure vessel and is triggered chiefly by weld-induced residual stresses. One solution of this problem that has been used in the past involves experimental measurements of residual stresses in conjunction with weld optimization testing. However, the experimental analysis of all relevant parameters is an extremely tedious process. Numerical simulation using the finite element method (FEM) not only supplements this method but, in view of modern computer capacities, is also an equally valid alternative in its own right. This paper will demonstrate that the technique developed for numerical simulation of the welding process has not only been properly verified and validated on austenitic pipe welds, but that it also permits making selective statements on improvements to the welding process. For instance, numerical simulation can provide information on the starting point of welding for every weld bead, the effect of interpass cooling as far as a possible sensitization of the heat affected zone (HAZ) is concerned, the effect of gap width on the resultant weld residual stresses, or the effect of the ‘last pass heat sink welding’ (welding of the final passes while simultaneously cooling the inner surface with water) producing compressive stresses in the root area of a circumferential weld in an austenitic pipe. The computer program (finite element residual stress analysis) was based on a commercially available code (Hibbitt, Karlsson, Sorensen, Inc, 1997. user's manual, version 5.6), and can be used as a 2-D or 3-D FEM analysis; depending on task definition it can provide a starting point for a fracture mechanics safety analysis with acceptable computing times.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号