首页 | 本学科首页   官方微博 | 高级检索  
     

基于聚类思想的弹道外推算法研究
引用本文:李同亮,朱勇,于琼. 基于聚类思想的弹道外推算法研究[J]. 雷达科学与技术, 2022, 20(2): 150-156
作者姓名:李同亮  朱勇  于琼
作者单位:中国电子科技集团公司第三十八研究所,安徽合肥 230088;中国人民解放军陆军工程大学,江苏南京 210007
摘    要:为了提高炮位侦察校射雷达中炮位侦察定位精度同时提升外推结果一致性,本文引入聚类思想,建立了基于K-均值聚类的弹道外推模型。该模型采用七态无迹卡尔曼滤波算法对量测数据进行多次滤波,然后利用4 阶龙格-库塔积分方法对火炮位置进行外推,最后对多次外推结果进行K-均值聚类处理,采用综合多因子方法计算簇品质,选取最优簇对应的聚类中心作为最终的火炮位置进行输出。实验结果表明,该弹道外推算法显著提升了外推结果的一致性及定位精度。

关 键 词:UKF滤波  弹道外推  K-均值聚类  簇品质

Research on Extrapolation Algorithm Based on Clustering Theory
LI Tongliang,ZHU Yong,YU Qiong. Research on Extrapolation Algorithm Based on Clustering Theory[J]. Radar Science and Technology, 2022, 20(2): 150-156
Authors:LI Tongliang  ZHU Yong  YU Qiong
Abstract:To improve the positioning accuracy and conformance of emplacement reconnaissance radar, this paper introduces clustering theory and establishes a ballistic extrapolation model based on K-means clustering. The model uses seven-state UKF to filter the measurement data for many times, and then uses fourth-order Runge-Kutta method for artillery position extrapolation. Finally, the results of multiple extrapolation K-means clusterings are performed K-means clustering,and the cluster quality is obtained by using the comprehensive multi-factor method. The clustering center corresponding to the optimal cluster is selected as the artillery position output. Experimental results show that the trajectory extrapolation method improves the consistency of extrapolation results and the location accuracy significantly.
Keywords:UKF filtering   trajectory extrapolation   K-means clustering   cluster quality
本文献已被 万方数据 等数据库收录!
点击此处可从《雷达科学与技术》浏览原始摘要信息
点击此处可从《雷达科学与技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号