Detection and classification of underwater acoustic transientsusing neural networks |
| |
Authors: | Hemminger T.L. Yoh-Han Pao |
| |
Affiliation: | Dept. of Eng. and Eng. Technol., Pennsylvania Univ., Erie, PA. |
| |
Abstract: | Underwater acoustic transients can develop from a wide variety of sources. Accordingly, detection and classification of such transients by automated means can be exceedingly difficult. This paper describes a new approach to this problem based on adaptive pattern recognition employing neural networks and an alternative metric, the Hausdorff metric. The system uses self-organization to both generalize and provide rapid throughput while utilizing supervised learning for decision making, being based on a concept that temporally partitions acoustic transient signals, and as a result, studies their trajectories through power spectral density space. This method has exhibited encouraging results for a large set of simulated underwater transients contained in both quiet and noisy ocean environments, and requires from five to ten MFLOPS for the implementation described. |
| |
Keywords: | |
|
|