首页 | 本学科首页   官方微博 | 高级检索  
     

决策可靠性分析及在SAR图像目标识别中的应用
引用本文:靳黎忠,陈俊杰,彭新光. 决策可靠性分析及在SAR图像目标识别中的应用[J]. 电讯技术, 2019, 59(4): 409-414
作者姓名:靳黎忠  陈俊杰  彭新光
作者单位:太原理工大学 信息与计算机学院,太原030024;太原科技大学 应用科学学院,太原030024;太原理工大学 信息与计算机学院,太原,030024
基金项目:国家自然科学基金资助项目(61672374)
摘    要:决策融合是提高合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别性能的重要手段,然而,可靠性较弱的决策往往会导致最终决策融合的效果变差。将可靠性分析引入基于决策融合的SAR目标识别方法中,分别计算各个决策的可靠性系数并选取可靠性的决策参与最终的决策融合。为了验证方法的有效性,分别将提出的可靠性分析应用于多特征决策融合以及多分类器决策融合并基于MSTAR(Moving and Stationary Target Acquisition and Recognition)数据集进行了目标识别实验。在基于主成分分析、线性鉴别分析和非负矩阵分解三种特征进行多特征决策融合的条件下,所提方法和直接进行决策融合的方法的识别率分别为97.47%和96.50%。在基于K近邻、支持向量机和稀疏表示分类器的多分类器决策融合中,所提方法和直接进行决策融合的方法的识别率分别为97.10%和96.28%。实验结果充分证明了所提方法的有效性。

关 键 词:合成孔径雷达  目标识别  决策融合  可靠性分析开放科学(资源服务)

Reliability analysis for decision fusion and its application in target recognition of SAR images
JIN Lizhong,CHEN Junjie and PENG Xinguang. Reliability analysis for decision fusion and its application in target recognition of SAR images[J]. Telecommunication Engineering, 2019, 59(4): 409-414
Authors:JIN Lizhong  CHEN Junjie  PENG Xinguang
Abstract:Decision fusion is an effective way to improve synthetic aperture radar(SAR) target recognition performance.However,the decisions with low reliabilities will impair the fused performance to some extent.Therefore,this paper brings reliability analysis into decision fusion for SAR target recognition.The reliability levels of individual decisions are calculated and only those with high reliability levels are used in the final decision fusion.To validate the effectiveness of the proposed method,the proposed strategy is applied in multi-feature decision fusion and multi-classifier decision and target recognition experiments are conducted on Moving and Stationary Target Acquisition and Recognition(MSTAR) dataset.Principle component analysis(PCA),liner discriminant analysis(LDA),and non-negative matrix factorization(NMF) are used for feature extraction in the multi-feature decision fusion.The proposed method and the direct decision fusion achieve the recognition accuracies of 97.47% and 96.50%,respectively.K-nearest neighbor(KNN),support vector machine(SVM),and sparse representation-based classification(SRC) are used as the classifiers in the multi-classifier decision fusion.The proposed method and the direct decision fusion achieve the recognition accuracies of 97.10% and 96.28%,respectively.The experimental results demonstrate the effectiveness of the proposed method.
Keywords:synthetic aperture radar(SAR)  target recognition  decision fusion  reliability analysis
本文献已被 万方数据 等数据库收录!
点击此处可从《电讯技术》浏览原始摘要信息
点击此处可从《电讯技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号