首页 | 本学科首页   官方微博 | 高级检索  
     

普通话智能测试系统的语音识别网络研究
引用本文:陈彩华. 普通话智能测试系统的语音识别网络研究[J]. 西华大学学报(自然科学版), 2014, 33(2): 17-21. DOI: 10.3969/j.issn.1673-159X.2014.02.004
作者姓名:陈彩华
作者单位:1.湖南三一工业职业技术学院, 湖南 长沙 410129
基金项目:湖南省“十二五”规划课题基金项目(XJKO12BYWO13A).
摘    要:现行的计算机辅助普通话水平测试系统主要采用隐马尔科夫模型的对数后验概率算法来衡量考生的发音质量,但是HMM模型之间易混淆。为提高系统测试的效度和信度,将普通话发音中的语言学知识引入测试系统,重构算法的识别网络,对算法的概率空间进行优化。实验结果表明,改进后的识别网络能够显著缩短系统的运算时间,有效降低概率空间对评分的影响,提高系统的评测性能。

关 键 词:普通话水平测试  语音识别网络  后验概率  语言学知识
收稿时间:2013-09-15

Research on Speech Recognition Network in Putonghua Level Test System
CHEN Cai-hua. Research on Speech Recognition Network in Putonghua Level Test System[J]. Journal of Xihua University(Natural Science Edition), 2014, 33(2): 17-21. DOI: 10.3969/j.issn.1673-159X.2014.02.004
Authors:CHEN Cai-hua
Affiliation:1.Hunan SANY Polytechnic College, Changsha 410129 China
Abstract:The existing computer-aided system uses the algorithm of HMM based log posterior probability to judge the tester's pro-nunciation , but the confusion between HMM models is big .In order to improve the validity and reliability of the system , the author re-constructs the recognition network in algorithm based on the introduction of linguistic knowledge of Putonghua pronunciation , and opti-mizes the probability spaces in algorithm .Experimental results indicate that the improved recognition networks can not only significantly reduce the system's operation time, but also effectively reduce the probability space impact on scoring , and improve the system of eval-uating performance .
Keywords:Putonghua level test  speech recognition network  posterior probability  linguistic knowledge
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《西华大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《西华大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号