首页 | 本学科首页   官方微博 | 高级检索  
     

基于变分水平集的图像分割模型
引用本文:唐利明,黄大荣,李可人. 基于变分水平集的图像分割模型[J]. 数据采集与处理, 2014, 29(5): 704-712
作者姓名:唐利明  黄大荣  李可人
作者单位:1. 重庆科技学院数理学院,重庆,401331;重庆大学数学与统计学院,重庆,401331
2. 重庆交通大学山区桥梁与隧道工程国家重点实验室培育基地,重庆,400074
3. 重庆科技学院数理学院,重庆,401331
摘    要:基于传统的变分水平集方法的图像分割,水平集函数必须周期性地重新初始化使之保持为符号距离函数,这存在如何选择重新初始化的时间和方式的难题.Li模型通过在能量泛函中引入一个内部约束能量,去除了水平集函数在演化过程中需重新初始化的难题.通过对Li模型的分析,提出了一个新的变分水平集的分割模型.该模型通过在能量泛函中加入一个较简单的内部约束能量,同样可以实现水平集演化过程中的无需重新初始化.并且通过对边缘停止函数的重新定义,引入了新的外部能量,使得本文模型对噪声图像的分割更具鲁棒性.实验表明无论是在收敛速度上,还是在对噪声图像的分割质量上,本文模型和Li模型相比都具有一定的优势.

关 键 词:变分水平集  符号距离函数  图像分割  边缘停止函数  重新初始化

New Model Based on Variational Level Set for Image Segmentation
Tang LiMing,Huang DaRong,Li Keren. New Model Based on Variational Level Set for Image Segmentation[J]. Journal of Data Acquisition & Processing, 2014, 29(5): 704-712
Authors:Tang LiMing  Huang DaRong  Li Keren
Affiliation:College of Mathematics and Physics, Chongqing University of Science and Technology;National Key Laboratory Incubation Base of Mountain Bridge and Tunnel Engineering,Chongqing Jiaotong University;College of Mathematics and Physics, Chongqing University of Science and Technology,
Abstract:In the traditional variational level set method for image segmentation, the evolving level set function needs periodical re-initialization to keep it close to a signed distance function during the evolution. It remains many serious problems such as when and how to apply the re-initialization. Li presented a new variational formulation that forces the level set function to be close to a signed distance function by adding an internal energy into the energy functional, and therefore completely eliminates the need of the expensive re-initialization procedure. We present a new image segmentation model based on variational level set method. It also completely eliminates the need of the re-initialization by adding a new and simple internal energy into the energy functional. In addition, a new external energy by redefining the edge stopping function is introduced, which makes the proposed model more robust to noisy image segmentation. The experimental results show that, compared with Li model, our model has some superiority in the convergence speed andsegmentation quality for noisy image.
Keywords:variational level set  signed distance function  image segmentation  edge stopping function  re-initialization
本文献已被 万方数据 等数据库收录!
点击此处可从《数据采集与处理》浏览原始摘要信息
点击此处可从《数据采集与处理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号