首页 | 本学科首页   官方微博 | 高级检索  
     


Natural convection slip flow in a vertical microchannel heated at uniform heat flux
Authors:Bernardo Buonomo  Oronzio Manca
Affiliation:1. Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran, Iran;2. Mechanical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
Abstract:Numerical solutions for steady state developing natural convection flow in air, in vertical parallel-plate microchannels are accomplished. An asymmetric heating is considered and the walls are assumed to be at uniform heat flux. A first-order model is used for slip and jump boundary conditions and an analytical solution for the fully developed flow is also given. Results are performed for air, for the heat flux ratio in the 0.0–1.0 range, for Rayleigh, Ra, and Knudsen, Kn, numbers from 10?1 to 8 × 103 and from 0.0 to 0.10, respectively. The maximum mass flow rate is always obtained for the highest considered Kn value, whereas the average Nusselt number, Nu, increases for lower Ra (<10) and decreases for Ra > 100. Wall temperature profiles have the lowest values for highest considered Kn value at lower Ra, whereas for the developing flow, they present opposite trends. For developing flow, velocity profiles for asymmetric and symmetric heating are completely different. In developing flow velocity profiles along the wall present the highest increases for asymmetric heating and the highest considered Kn value.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号