首页 | 本学科首页   官方微博 | 高级检索  
     

基于判别低秩矩阵恢复和稀疏表示的车标识别
引用本文:曹蒙蒙,李新叶,范月坤. 基于判别低秩矩阵恢复和稀疏表示的车标识别[J]. 电子科技, 2015, 28(4): 57-60,64
作者姓名:曹蒙蒙  李新叶  范月坤
作者单位:(华北电力大学 电子与通信工程系,河北 保定 071003)
基金项目:河北省教育厅指导性计划基金资助项目(Z2012038)
摘    要:针对现有的车标识别方法无法较好地处理阴影、遮挡、污损等情况下识别率低的问题,提出了基于判别低秩矩阵恢复和稀疏表示的车标识别方法。文中采用判别低秩矩阵恢复来纠正效果较差的训练样本,并通过学习一个低秩投影矩阵,将待测样本特征矩阵投影到相应低秩子空间来恢复干净的测试样本。并采用稀疏表示方式进行分类识别。同时,在Medialab LPR Database数据集上进行了对比实验,实验结果表明,该识别方法的性能要优于当前其他识别方法

关 键 词:车标识别  低秩矩阵恢复  稀疏表示  低秩投影矩阵  

Vehicle Logo Recognition Based on Discriminative Low-rank Matrix Recovery and Sparse Representation
CAO Mengmeng , LI Xinye , FAN Yuekun. Vehicle Logo Recognition Based on Discriminative Low-rank Matrix Recovery and Sparse Representation[J]. Electronic Science and Technology, 2015, 28(4): 57-60,64
Authors:CAO Mengmeng    LI Xinye    FAN Yuekun
Affiliation:(Department of Electronic and Communication Engineering,North China Electric Power University,Baoding 071003,China)
Abstract:In consideration of the problem that the existing vehicle logo recognition methods cannot handle the vehicle logo recognition under unsatisfactory situations,such as shadows,occlusions,stains,which cause low recognition rate.Therefore,an algorithm based on discriminative low-rank matrix recovery and sparse representation is proposed.First,discriminative low-rank matrix recovery is used to correct the unsatisfactory training samples,and then it learns a low-rank projection matrix to correct the corrupted testing sample by projecting the sample onto its corresponding underlying subspaces.Finally,the sparse representation method is used to classify the testing sample.Comparative experiments made on Medialab LPR Dataset show that the performance of the method is better than other vehicle logo recognition methods.
Keywords:vehicle logo recognition  low-rank matrix recovery  sparse representation  low-rank projection matrix,
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电子科技》浏览原始摘要信息
点击此处可从《电子科技》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号