首页 | 本学科首页   官方微博 | 高级检索  
     

基于免疫聚类与HMM的时序信息系统决策
引用本文:黎昱,黄席樾,周欣. 基于免疫聚类与HMM的时序信息系统决策[J]. 信息与控制, 2003, 32(5): 385-390
作者姓名:黎昱  黄席樾  周欣
作者单位:重庆大学自动化学院,重庆,400044
基金项目:教育部博士点基金资助项目 ( 990 61116)
摘    要:本文针对时间序列数据的符号化问题,提出采用免疫聚类算法处理多维时间序列的符号化,利用克隆选择原理,生成能充分反映数据真实分布的记忆抗体作为符号集合. 时间序列信息系统中的决策问题的关键是有效地挖掘历史数据中包含的时序信息. 本文提出了一种改进的隐马尔科夫模型,运用最大熵原理对模型进行训练,求取熵最大化的概率分布,并将其应用于时序信息系统的决策. 通过实验验证了其有效性.

关 键 词:时间序列  符号化  免疫聚类  隐马尔科夫模型  最大熵原理
文章编号:1002-0411(2003)05-0385-06

DECISION-MAKING IN TIME-SERIES INFORMATION SYSTEM BASED ON IMMUNE CLUSTERING AND HMM
LI Yu,HUANG Xi yue,ZHOU Xin. DECISION-MAKING IN TIME-SERIES INFORMATION SYSTEM BASED ON IMMUNE CLUSTERING AND HMM[J]. Information and Control, 2003, 32(5): 385-390
Authors:LI Yu  HUANG Xi yue  ZHOU Xin
Abstract:For the problem of symbolization of time series, the algorithm of immune clustering is adopted to process the symbolization of time series with multi dimension. By using theory of clonal selection, the memory antibody set, which can reflect the real distribution of data, is obtained and used as symbol set. Furthermore, the key problem of decision making in time series information system is how to effectively mine the time order information in history data. Therefore a modified hidden Markov model (HMM) is proposed for decision making, and the maximum entropy principle is adopted to train the model and calculate probability distribution with maximum entropy. The effectiveness of these methods is proved by an experiment.
Keywords:time series  symbolization  immune clustering  HMM  maximum entropy
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《信息与控制》浏览原始摘要信息
点击此处可从《信息与控制》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号