首页 | 本学科首页   官方微博 | 高级检索  
     


Continuous size-based focusing and bifurcating microparticle streams using a negative dielectrophoretic system
Authors:Ali Hemmatifar  Mohammad Said Saidi  Arman Sadeghi  Mahdi Sani
Affiliation:1. Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, PO Box 11155-9567, Tehran, Iran
2. Energy Conversion Division, Sharif University of Technology, International Branch, Kish Island, Iran
Abstract:Dielectrophoresis (DEP) is an electrokinetic phenomenon which is used for manipulating micro- and nanoparticles in micron-sized devices with high sensitivity. In recent years, electrode-based DEP by patterning narrow oblique electrodes in microchannels has been used for particle manipulation. In this theoretic study, a microchannel with triangular electrodes is presented and a detailed comparison with oblique electrodes is made. For each shape, the behavior of particles is compared for three different configurations of applied voltages. Electric field, resultant DEP force, and particle trajectories for configurations are computed by means of Rayan native code. The separation efficiency of the two systems is assessed and compared afterward. The results demonstrate higher lateral DEP force, responsible for particle separation, distributed wider across the channel width for triangular shape electrodes in comparison with the oblique ones. The proposed electrode shape also shows the ability of particle separation by attracting negative DEP particles to or propelling them from the flow centerline, according to the configuration of applied voltages. A major deficiency of the oblique electrodes, which is the streamwise variation of the lateral DEP force direction near the electrodes, is also eliminated in the proposed electrode shape. In addition, with a proper voltages configuration, the triangular electrodes require lower voltages for particle focusing in comparison with the oblique ones.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号