首页 | 本学科首页   官方微博 | 高级检索  
     


Three-dimensional simulation and optimization of an isothermal PROX microreactor for fuel cell applications
Authors:M. Vahabi  M.H. Akbari
Affiliation:Center for Fuel Cell Research, Department of Mechanical Engineering, Shiraz University, Molla Sadra Ave., Shiraz 71348-51154, Iran
Abstract:Three-dimensional numerical simulations of the reacting flow in rectangular micro-channel PROX reactors are performed. To solve the set of governing equations, a finite volume method is applied using an improved SIMPLE algorithm. A three-step surface kinetics for the chemical reactions is utilized that includes hydrogen oxidation, carbon monoxide oxidation, and water–gas shift reaction. The kinetics chosen are for a Pt–Fe/γ-Al2O3 catalyst and operating temperatures of about 100 °C. The PROX reactor is expected to remove the carbon monoxide content in a hydrogen-rich stream from about 2% to less than 10 ppm. Effects of the inlet steam content, oxygen to carbon monoxide ratio, reactor wall temperature, aspect ratio of the channel cross section, and the channel hydraulic diameter are investigated. It is found that increasing the steam content, oxygen to carbon monoxide ratio, or wall temperature may improve the performance of the microreactor. It is also shown that the rate of water–gas shift reaction or its reverse is much lower than the oxidation reactions. Finally, it is revealed that based on a modified CO yield definition, the optimum channel geometry is a square shape.
Keywords:Hydrogen production   PROX   Microreactor   CO selectivity   Conversion   Yield   Finite volume method   SIMPLE algorithm
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号